Automatic Quantification of Immunohistochemically Stained Cell Nuclei Using Unsupervised Image Analysis

نویسندگان

  • Petter Ranefall
  • Kenneth Wester
  • Ewert Bengtsson
چکیده

A method for quantification of images of immunohistochemically stained cell nuclei by computing area proportions is presented. The image is transformed by a principal component transform. The resulting first component image is used to segment the objects from the background using dynamic thresholding of the P2/A-histogram, where P2/A is a global roundness measure. Then the image is transformed into principal component hue, defined as the angle around the first principal component. This image is used to segment positive and negative objects. The method is fully automatic and the principal component approach makes it robust with respect to illumination and focus settings. An independent test set consisting of images grabbed with different focus and illumination for each field of view was used to test the method, and the proposed method showed less variation than the intraoperator variation using supervised Maximum Likelihood classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Quantification of Immunohistochemically Stained Cell Nuclei Based on Standard Reference Cells

A fully automatic method for quantification of images of immunohistochemically stained cell nuclei by computing area proportions, is presented. Agarose embedded cultured fibroblasts were fixed, paraffin embedded and sectioned at 4 microm. They were then stained together with 4 microm sections of the test specimen obtained from bladder cancer material. A colour based classifier is automatically ...

متن کامل

A multistep image analysis method to increase automated identification efficiency in immunohistochemical nuclear markers with a high background level

Background In anatomical and surgical pathology, the customary method of manual observation and measurement of immunohistochemically stained markers from microscopic images is tedious, expensive and time consuming. There is great demand for automated procedures for analyzing digital images (DIs) of these markers [1] given that they reduce human variability in the evaluation of stained markers [...

متن کامل

Automatic Cell Image Segmentation Using a Shape-Classification Model

This paper presents a segmentation method for detecting cells in immunohistochemically stained cytological images. A two-phase approach to segmentation is used where an unsupervised clustering approach coupled with cluster merging based on a fitness function is used as the first phase to obtain a first approximation of the cell locations. A joint segmentation-classification approach incorporati...

متن کامل

Automatic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method

Automatic image segmentation of immunohistologically stained breast tissue sections helps pathologists to discover the cancer disease earlier. The detection of the real number of cancer nuclei in the image is a very tedious and time consuming task. Segmentation of cancer nuclei, especially touching nuclei, presents many difficulties to separate them by traditional segmentation algorithms. This ...

متن کامل

Case Report: Effects of Image Compression on Automatic Count of Immunohistochemically Stained Nuclei in Digital Images

This study investigates the effects of digital image compression on automatic quantification of immunohistochemical nuclear markers. We examined 188 images with a previously validated computer-assisted analysis system. A first group was composed of 47 images captured in TIFF format, and other three contained the same images converted from TIFF to JPEG format with 3x, 23x and 46x compression. Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1998